循环流化床锅炉(CFB)燃烧技术是一项近20年来发展起来的燃煤技术。它具有燃料适应性广、燃烧效率高、氮氧化物排放低、负荷调节比大和负荷调节快等突出优点。自循环流化床燃烧技术出现以来,循环流化床锅炉已在世界范围内得到广泛的应用,大容量的循环流化床电站锅炉已被发电行业所接受。世界上最大容量的250MW循环流化床锅炉已在1997年投运,多台200~250MW大容量循环流化床锅炉也已投产。我国集中于中型CFB的研制与开发,目前已完全商业化。到1998年底,我国已投运及订货的35t/h以下的循环流化床锅炉共计约600台,已开始走向电力市场,并且开始大型CFB的研制工作。
主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室的稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。主循环回路不仅直接影响整个循环流化床锅炉的总体设计、系统布置,而且与其运行性能有直接关系。分离器是主循环回路的主要部件,因而人们通常把分离器的形式,工作状态作为循环流化床锅炉的标志。
1、循环流化床的发展现状:
气固分离器是CFB系统的核心部件之一。其之所以关键,从运行机理上来讲,只有当分离器完成了含尘气流的气固分离并连续地把收集下来的物料回送至炉膛,实现灰平衡及热平衡,才能保证炉内燃烧的稳定与高效;就系统结构而言,分离器设计、布置得是否合理直接关系着锅炉系统制造、安装、运行、维修等各方面的经济性与可靠性。虽然分离器是CFB必不可少的关键环节,但它又具有相对的独立性和灵活性,在结构与布置上回旋余地很大。从某种意义上讲,CFB锅炉燃烧技术的发展也取决于气固分离技术的发展,分离器设计上的差异标志着不同的CFB技术流派。
1.1、第一代循环流化床燃烧技术--绝热旋风分离循环流化床锅炉
旋风分离器在化工、冶金等领域具有悠久的使用历史,是比较成熟的气固分离装置,因此在CFB领域应用最多。
德国Lurgi公司较早地开发出了采用保温、耐火及防磨材料砌装成筒身的高温绝热式旋风分离器的CFB锅炉。分离器入口烟温在850℃左右。应用绝热旋风筒作为分离器的循环流化床锅炉称为第一代循环流化床锅炉,目前已经商业化。Lurgi公司、Ahlstrom公司、以及由其技术转移的Stein、ABB-CE、AEE、EVT等公司设计制造的循环流化床锅炉均采用了此种形式。这种分离器具有相当好的分离性能,使用这种分离器的循环流化床锅炉具有较高的性能。据统计,目前除中国大陆外,有78的CFB全部采用了高温绝热旋风分离器,但这种分离器也存在一些问题,主要是旋风筒体积庞大,因而钢耗较高,锅炉造价高,占地较大,旋风筒内衬厚、耐火材料及砌筑要求高、用量大、费用高;启动时间长、运行中易出现故障;密封和膨胀系统复杂;尤其是在燃用挥发份较低或活性较差的强后燃性煤种时,旋风筒内的燃烧导致分离后的物料温度上升,引起旋风筒内或回料腿回料阀内的超温结焦。这些问题在我国的实际生产条件下显得更为突出。
Circofluid的中温分离技术在一定程度上缓解了高温旋风筒的问题,炉膛上部布置了较多数量的受热面,降低了旋风筒入口处的烟气温度和体积,旋风筒的体积和重量有所减小,因此相当程度上克服了绝热旋风筒技术的缺陷,使其运行可靠性提高,但炉膛上部布置有过热器和高温省煤器等,需要采用塔式布置,炉膛比较高,钢耗量大,使锅炉造价提高。同时,它的CO排放及检修问题在一定程度上限制了该技术的发展。
1.2、第二代CFB燃烧技术--水(汽)冷分离循环流化床锅炉
为保持绝热旋风筒循环流化床锅炉的优点,同时有效地克服该炉型的缺陷,FosterWheeler公司设计出了堪称典范的水(汽)冷旋风分离器,其结构如图2。应用水(汽)冷分离器的循环流化床锅炉被称为第二代循环流化床锅炉。该分离器外壳由水冷或汽冷管弯制、焊装而成,取消绝热旋风筒的高温绝热层,代之以受热面制成的曲面及其内侧布满销钉涂一层较薄厚度的高温耐磨浇注料。壳外侧覆以一定厚度的保温层,内侧只敷设一薄层防磨材料。水(汽)冷旋风筒可吸收一部分热量,分离器内物料温度不会上升,甚至略有下降,较好地解决了旋风筒内侧防磨问题。该公司投运的循环流化床锅炉从未发生回料系统结焦的问题,也未发生旋风筒内磨损问题,充分显示了其优越性。这样,高温绝热型旋风分离循环床的优点得以继续发挥,缺点则基本被克服。
当然,任何一种设计都难以尽善尽美,FW式水(汽)冷旋风分离器的问题是制造工艺复杂,生产成本过高,缺乏市场竞争力,这使其商业竞争力下降,通用性和推广价值受到了限制。
上一篇: 燃煤锅炉发展趋势分析
下一篇: 我国节能环保锅炉行业的发展趋势